

California Energy Commission

Energy Storage Safety Workshop

August 19, 2015

Energy Storage Safety

Neal Bartek
Distributed Energy Resources

Energy Storage Integration – Learnings from the Field

Safety of Energy Storage

- Safety Standards for Grid-Scale ESS are not widely available today
- Robust system specifications critical
- Functional and effective:
 - remote monitoring & notification
 - inspection & maintenance protocols
 - protection/suppression systems
- Internal and external training
 - field personnel
 - first responders

Energy Storage Procurement Target

SDG&E has an energy storage procurement target of **165 MW.** SDG&E has achieved **31%** based on existing/in-progress projects **(51MW).** Projects procured pursuant to the 2014 All Source RFO and 2014 Distribution RFP are expected to significantly increase progress towards the targets.

Energy Storage Systems – By Domain

Borrego Springs Demonstration Project

Utilize advanced technologies to integrate and manage distributed resources within the Smart Grid

Budget:	\$8.0M DOE and \$2.8M CEC plus matching funds from SDG&E and partners
Benefits:	 Integrate and leverage various generation and storage configurations Reduce the peak load of feeders and enhance system reliability Enable customers to become more active participants in managing their energy use

Borrego Springs Demonstration Project

Substation Energy Storage

- Borrego Springs
 - Gen 1: 500 kW/1.5 MWh ESS
 - Gen 2: 1 MW/3 MWh ESS added
- Modes of Operation
 - Peak Shaving/Load Following
 - Renewable Smoothing
 - Support Islanding Operation
 - Blackstart Synchronization

Borrego Springs Demonstration Project

Community Energy Storage

- Borrego Springs
 - (3) 25 kW/50 kWh ESS
- Modes of Operation
 - Operated independently or as a fleet
 - Peak Shaving/Load Following
 - Renewable Smoothing

Safety is SDG&E's Core Focus

Regardless of the Utility function, SDG&E's Overriding Concern is **Safety**

- Assurance
 - Maintain highest degree of public safety possible at all times
- Prevention
 - Adhere to methods which avoid unsafe events from occurring
- Minimization of impact
 - Systems designed eliminate or reduce the extent to which an event has impact on perimeter and the immediate systems
- Limits
 - Architecting the system to isolate the consequences of an event

Utility Operations Safety and the Role of Standards

- Specific safety standards for grid-scale ESS are largely under-defined
 - DOE is working to raise ESS safety awareness and, with Sandia National Lab, has produced the <u>Energy Storage Safety Strategic Plan</u>
- SDG&E legacy methods for equipment and processes are a starting point
- Existing Standards Development Organization (SDO) protocols will need to provide increased specificity to the technologies
- Applicable standards today include:
 - Site safety: All applicable OSHA, NEC and NFPA requirements
 - Fire: NFPA 704
 - Operation: IEEE 1547/UL1741/UL1741/UL1642
 - Enclosure: NEMA 3R
 - Signage: ANSI Z535
 - Cybersecurity: NISTIR 7628

Safety From the Start – Procurement

- Bid Package includes
 - Well defined objectives, applications and use cases
 - Clearly stated performance expectations
 - System specification including designation of:
 - Applicable safety standards
 - Methods and systems required to assure safety
 - Explicitly defined protocols for remote communications
 - Details of SCADA integrated interconnection and relay protocols
- Requirements for Factory Acceptance Testing & Site Acceptance Testing
- Detailed grid isolation functions and methods are specified
- Vendors generally receptive of the specification
 - No objections to date
 - SDG&E works proactively with bidders/vendors early in the process to address/resolve any ambiguity in our specification.

Safety By Design – Integration Requirements

SDG&E requires all substation ESS interconnection via SCADA switch and prescribed relay settings

- Without permissives from Dist Ops via DMS, these ESS are not enabled to operate
 - Permits the system to operate only under specific conditions
- Host site SCADA switch provides instantaneous remote disconnection, as needed.
- Systems required to meet all IEEE 1547 interconnection requirements
- Systems occupy a dedicated fenced yard with limited access privileges
- Inspection & maintenance processes configured in agreement with vendor recommendations
- Smaller systems:
 - Community-scale ESS siting process similar to conventional pad-mounted equipment and are configured with by-pass switches to enable customers to remain energized during inspection & maintenance
 - Behind-the-meter systems (currently Rule 21) to align with forthcoming UL9540

Safety By R&D Activity – Vendor Partner Engagement

Advanced Inverter Functions being Explored for Back-up to Critical Loads

- Islanding
 - Dist Ops observation of system operation continuous, but operation independent and automated
 - From the perspective of the circuit, the system is off
- Blackstart
 - Isolation from the grid
 - System start-up supporting critical load occurs only after SCADA switch open
- Resynchronization occurs when the grid function is restored via reference signal from SCADA switch

Safety in the Long Run – Operations

SDG&E maintains a Hierarchical Notification System for Operators to monitor all substation ESS systems

- Continuous in-house remote monitoring of notifications/alerts/alarms
- One-second updates via fiber backhaul
- Event process defined by specific system instrumentation thresholds
 - Warning
 - Shutdown
 - Event (fire or other resulting in key alarm)
- Key Alarm process
 - Operators instantly receive notification of FSS activation
 - Immediate camera check and truck roll to inspect & assure site perimeter safety
 - Open contact with the vendor and local authorities for response orchestration
 - Engage Fire Coordination as necessary

Safety in the Long Run – Networked Operations

SDG&E is Implementing Distributed Energy Resources Management System (DERMS)

- DERMS continuously monitors and manages any number of DER nodes on the greater grid
 - DERMS has the ability to dispatch each node independently according to optimized functional algorithms
 - Regional conditions determine modes of operation and set points for the systems to respond appropriately in automated fashion
- Dist Ops can override automated modes during episodes when manual operation is required
- Safe operation of DERMS is assured by functional rulesets through advanced integration with DMS

Safety Processes – Response & Protection

- SDG&E Fire Coordinator maintains on-going dialogue with regional authorities
- Internal training modules (2 hour) and safety handbook chapter developed for field personnel and first responders. Annual compliance updates required.
- All trained and certified technicians to adhere to safety protocols:
 - Non conductive, fire retardant clothing
 - Insulated gloves
 - Anti-flash eye and/or face protection
 - Insulated tools > 1000V
 - Insulating shoes or mat > 1000V
 - Applicably rated AC/DC Voltmeter
 - Approved work processes and perimeter for all maintenance & repair

Effective Energy Storage Integration – Key Take Aways

Learnings

- Plan plan plan test test test
- Factory Acceptance Testing is imperative, but...
- There is no substitute for field demonstration
- Siting equipment & permitting are challenging
- Standards development is not at pace with regulatory requirements – creates challenges in terms of approvals
- Never underestimate the complexities of integration
- Nascent technologies require patient implementation
- "Partnering" vendors are essential for safe, reliable and efficient integration of any new technologies
- Involve & educate of all impacted organizations early
- Cannot operate IT & Engineering silos...need blending of skills & close collaboration for best results
- DER, if done correctly, has a very positive grid impact

Thank you for your time!

